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2.3 The Cauchy Integral Formula

In order to obtain Cauchy's integral formula, a key result of complex analysis,
we need a sharpened version of Proposition 2.14.

Proposition 2.16. Let D ⊂ C be a region and p ∈ D. Let f : D → C be

continuous function which is moreover holomorphic in D \ {p}. Let ∆ be a

triangle in D such that p is one of the corners of ∆. Then,∫
∂∆

f = 0.

Proof. Fix ε > 0. Denote the corner points of ∆ by (p, x, y). De�ne the
triangle ∆t for t ∈ [0, 1] as the triangle with corner points (p, xt, yt), where
xt := p + t(x − p) and yt := p + t(y − p). Then, l(∂∆t) → 0 as t → 0.
By continuity of f on the compact set ∆, Proposition 2.7 implies that there
exists t > 0 such that ∫

∂∆t

f < ε.

Now, subdivide the triangle ∆ into the triangle ∆t and the triangles with
corners given by (xt, x, y) and (xt, y, yt). The integral over boundary paths
of the latter two triangles vanishes by Proposition 2.14. On the other hand,
the sum of the integrals over the boundary paths of the three triangles equals
the integral over the boundary path of ∆. Thus,∫

∂∆
f =

∫
∂∆t

f < ε.

Since ε was arbitrary the statement follows.

Exercise 15. The above Proposition can be strengthened considerably.
Show the following: Let ∆ ⊂ C be a triangle and let f : ∆ → C be con-
tinuous. Furthermore, assume that f is holomorphic in the interior of ∆.
Then, ∫

∂∆
f = 0.

The above proposition implies a corresponding stronger version of Corol-
lary 2.15.

Corollary 2.17. Let D ⊆ C be a star-shaped region with center z0 ∈ D
and f : D → C continuous. Furthermore assume that f is holomorphic in

D \ {z0}. Then, f is integrable in D.
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Proof. Combine Proposition 2.13 with Proposition 2.16.

De�nition 2.18. Let γ be a closed path. Let z ∈ C \ |γ| and de�ne the
index of z with respect to γ as,

Indγ(z) =
1

2πi

∫
γ

1
ζ − z

dζ.

Theorem 2.19. Let γ be a closed path and U := C \ |γ|. Then, Indγ(z) ∈ Z
for all z ∈ U . Moreover, Indγ(z) = Indγ(z′) if z and z′ are in the same

connected component of U . Also, Indγ(z) = 0 if |z| is su�ciently large.

Proof. Parametrizing γ : [a, b] → C we have,

Indγ(z) =
1

2πi

∫ b

a

γ′(t)
γ(t) − z

dt.

In order to show that Indγ(z) ∈ Z we de�ne φ : [a, b] → C via,

φ(t) := exp
(∫ t

a

γ′(s)
γ(s) − z

ds

)
.

It is then su�cient to show that φ(b) = 1, which we proceed to do. Observe
that φ is continuous and piecewise continuously di�erentiable with piecewise
di�erential

φ′(t) =
φ(t)γ′(t)
γ(t) − z

.

The quotient function t 7→ φ(t)/(γ(t) − z) is also continuous and piecewise
continuously di�erentiable with piecewise di�erential given by,(

φ(t)
γ(t) − z

)′
= 0.

Thus, this function is piecewise constant and continuous. So it must be
constant on the connected set [a, b]. Equating its value at a with its value
at b yields,

φ(b) = φ(a)
γ(b) − z

γ(a) − z
= 1,

since φ(a) = exp(0) = 1 and γ is closed.

Exercise.Show that Indγ(z) = Indγ(z′) if z and z′ are in the same con-
nected component of U . [Hint: Show �rst that Indγ : U → C is continuous.]
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It remains to show that Indγ(z) = 0 if z is su�ciently large. Let M :=
supt∈[a,b] |γ(t)| and N := supt∈[a,b] |γ′(t)|. Then, if |z| > M + l(γ)N we have,
using Proposition 2.7,

|Indγ(z)| ≤ l(γ)N
|z| − M

< 1.

On the other hand Indγ(z) ∈ Z, so we must have in this case Indγ(z) = 0.
This completes the proof.

Exercise 16. Let γ : [0, 1] → C be the path γ(t) := z0 + re2πikt with z0 ∈ C
and r > 0 and k ∈ Z. Show that Indγ(z) = k if z ∈ Br(z0) and Indγ(z) = 0
if z ∈ C \ Br(z0).

Theorem 2.20 (Cauchy Integral Formula). Let D ⊆ C be a star-shaped

region with center z, f ∈ O(D), γ a closed path in D \ {z}. Then,

f(z)Indγ(z) =
1

2πi

∫
γ

f(ζ)
ζ − z

dζ.

Proof. De�ne the function g : D → C as follows,

g(ζ) :=

{
f(ζ)−f(z)

ζ−z if ζ 6= z

f ′(z) if ζ = z
.

By the property of the complex derivative of f at z, g is continuous in all
of D. Moreover, g is holomorphic in D \ {z}. So, by Corollary 2.17, g is
integrable in D. By Proposition 2.11 this implies,

0 =
∫

γ
g =

∫
γ

f(ζ)
ζ − z

dζ − f(z) 2πi Indγ(z).

Let B be an open disk in C. We denote by ∂B its boundary, i.e., ∂B =
B \ B. We also denote by ∂B a closed path that traces the boundary ∂B
once with positive (anti-clockwise) direction. If B has center z0 and radius r,
the path ∂B can be represented by the corresponding path γ of Exercise 16
with k = 1.

The Cauchy Integral Formula is often used in the special case where the
path is the boundary of a disk: Let D ⊆ C be a region, f ∈ O(D), z ∈ D
and r > 0 such that Br(z) ⊂ D. Then,

f(z) =
1

2πi

∫
∂Br(z)

f(ζ)
ζ − z

dζ.
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Lemma 2.21. Let U ⊆ C be open, f : U → C continuous and γ a closed

path in U . De�ne the function F : C \ |γ| → C via

F (z) :=
∫

γ

f(ζ)
ζ − z

dζ.

Then, F is analytic in C \ |γ|. Moreover, for all n ∈ N0,

F (n)(z) = n!
∫

γ

f(ζ)
(ζ − z)n+1

dζ.

Proof. Fix z0 ∈ C \ |γ| and de�ne for all n ∈ N0,

cn :=
∫

γ

f(ζ)
(ζ − z0)n+1

dζ.

Set r := inft∈[a,b] |γ(t) − z0|. We proceed to show that the power series

G(z) :=
∞∑

n=0

cn(z − z0)n

converges in Br(z0) and agrees there with F (z). Fix z ∈ Br(z0). De�ne the
partial sums gn : |γ| → C for n ∈ N0 via,

gn(ζ) :=
n∑

k=0

f(ζ)(z − z0)k

(ζ − z0)k+1
.

Since |ζ−z0| ≥ r > |z−z0| and f is bounded on |γ|, the sequence of functions
{gn}n∈N0 converges uniformly on |γ|. Thus, by Proposition 2.8,

G(z) = lim
n→∞

∫
γ
gn(ζ) dζ =

∫
γ

lim
n→∞

gn(ζ) dζ.

In particular, G(z) is well de�ned and its radius of convergence is at least r.
Consider now the identity

1
1 − x

=
∞∑

k=0

xk,

for x ∈ B1(0) ⊂ C. Inserting x = (z − z0)/(ζ − z0) and dividing by (ζ − z0)
we get,

1
ζ − z

=
∞∑

k=0

(z − z0)k

(ζ − z0)k+1
.
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This implies,

lim
n→∞

gn(ζ) =
f(ζ)
ζ − z

,

and hence G(z) = F (z).
Finally, Theorem 1.16 tells us that F is holomorphic and its complex

derivative is again analytic in the same region. Iterating the formula from
this Theorem for the derivative yields,

F (n)(z) = n! cn,

and thus the stated formula.

Theorem 2.22 (Cauchy-Taylor Representation Theorem). Let D ⊆ C be a

region, f ∈ O(D). Then, f is analytic in D. Moreover, for any z0 ∈ D and

r > 0 such that Br(z0) ⊆ D we have,

f (n)(z) =
n!
2πi

∫
∂Br(z0)

f(ζ)
(ζ − z)n+1

dζ.

for all z ∈ Br(z0).

Proof. Fix z0 ∈ D and ρ > 0 such that Bρ(z0) ⊆ D. Then choose r such that

0 < r < ρ. This implies, Br(z0) ⊂ D and by Theorem 2.20 and Exercise 16
we have,

f(z) =
1

2πi

∫
∂Br(z0)

f(ζ)
ζ − z

dζ.

for z ∈ Br(z0). Lemma 2.21 then tells us that f is analytic in Br(z0) and
that

f (n)(z) =
n!
2πi

∫
∂Br(z0)

f(ζ)
(ζ − z)n+1

dζ.

for z ∈ Br(z0) and n ∈ N0. But since r can be chosen arbitrarily close to ρ,
the radius of convergence of the power series for f around z0 is actually at
least ρ. Thus, f is analytic in D. This completes the proof.

This Theorem �nally yields the remarkable result that holomorphic func-
tions are analytic. Together with Theorem 1.16 this means that the proper-
ties of holomorphicity and analiticity are really equivalent. Furthermore, it
implies that the derivative of a holomorphic function is again a holomorphic
function.
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Corollary 2.23. Let D ⊆ C be a region and f : D → C integrable. Then

f ∈ O(D).

Proof. If f is integrable in D, then there exists a primitive F ∈ O(D) of
f . But F being holomorphic, its derivative F ′ = f is also holomorphic by
Theorem 2.22.

De�nition 2.24. Let D ⊆ C be a region. We call f : D → C locally analytic

i� for every point z ∈ D there is r > 0 so that f can be represented by a
power series around z with radius of convergence r.

De�nition 2.25. Let D ⊆ C be a region. We call f : D → C locally

integrable i� for every point z ∈ D there is a neighborhood U ⊆ D of z such
that f is integrable in U .

We wrap up this section with the following summary result.

Theorem 2.26. Let D ⊆ C be a region. For a function f : D → C the

following statements are equivalent:

1. f is holomorphic in D.

2. f is analytic in D.

3. f is locally analytic in D.

4. f is locally integrable in D.

Proof. Exercise.

Exercise 17. Calculate the following integrals. [Hint: Use the Cauchy
Integral formula]

1. ∫
∂B2(0)

ez

(z + 1)(z − 3)2
dz

2. ∫
∂B2(−2i)

1
z2 + 1

dz

Exercise 18. Determine all entire functions f ∈ O(C) which satisfy the
di�erential equation f ′′ + f = 0.


